mh
or hmc
psrf.hmclearn.Rd
Gelman and Rubin's diagnostic assesses the mix of multiple MCMC chain with different initial parameter values Values close to 1 indicate that the posterior simulation has sufficiently converged, while values above 1 indicate that additional samples may be necessary to ensure convergence. A general guideline suggests that values less than 1.05 are good, between 1.05 and 1.10 are ok, and above 1.10 have not converged well.
# S3 method for hmclearn psrf(object, burnin = NULL, ...)
object | an object of class |
---|---|
burnin | optional numeric parameter for the number of initial MCMC samples to omit from the summary |
... | currently unused |
Numeric vector of Rhat statistics for each parameter
Gelman, A. and Rubin, D. (1992) Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7(4) 457-472.
Gelman, A., et. al. (2013) Bayesian Data Analysis. Chapman and Hall/CRC.
Gabry, Jonah and Mahr, Tristan (2019). bayesplot: Plotting for Bayesian Models. https://mc-stan.org/bayesplot/
# poisson regression example set.seed(7363) X <- cbind(1, matrix(rnorm(40), ncol=2)) betavals <- c(0.8, -0.5, 1.1) lmu <- X %*% betavals y <- sapply(exp(lmu), FUN = rpois, n=1) f <- hmc(N = 1000, theta.init = rep(0, 3), epsilon = 0.01, L = 10, logPOSTERIOR = poisson_posterior, glogPOSTERIOR = g_poisson_posterior, varnames = paste0("beta", 0:2), param = list(y=y, X=X), parallel=FALSE, chains=2) psrf(f, burnin=100)#> beta0 beta1 beta2 #> 1.018074 1.003192 1.011000