hmc.Rd
This function runs the HMC algorithm on a generic model provided
the logPOSTERIOR
and gradient glogPOSTERIOR
functions.
All parameters specified within the list param
are passed to these two functions.
The tuning parameters epsilon
and L
are passed to the
Leapfrog algorithm.
hmc( N = 10000, theta.init, epsilon = 0.01, L = 10, logPOSTERIOR, glogPOSTERIOR, randlength = FALSE, Mdiag = NULL, constrain = NULL, verbose = FALSE, varnames = NULL, param = list(), chains = 1, parallel = FALSE, ... )
N | Number of MCMC samples |
---|---|
theta.init | Vector of initial values for the parameters |
epsilon | Step-size parameter for |
L | Number of |
logPOSTERIOR | Function to calculate and return the log posterior given a vector of values of |
glogPOSTERIOR | Function to calculate and return the gradient of the log posterior given a vector of values of |
randlength | Logical to determine whether to apply some randomness to the number of leapfrog steps tuning parameter |
Mdiag | Optional vector of the diagonal of the mass matrix |
constrain | Optional vector of which parameters in |
verbose | Logical to determine whether to display the progress of the HMC algorithm |
varnames | Optional vector of theta parameter names |
param | List of additional parameters for |
chains | Number of MCMC chains to run |
parallel | Logical to set whether multiple MCMC chains should be run in parallel |
... | Additional parameters for |
Object of class hmclearn
hmclearn
objectsN
Number of MCMC samples
theta
Nested list of length N
of the sampled values of theta
for each chain
thetaCombined
List of dataframes containing sampled values, one for each chain
r
List of length N
of the sampled momenta
theta.all
Nested list of all parameter values of theta
sampled prior to accept/reject step for each
r.all
List of all values of the momenta r
sampled prior to accept/reject
accept
Number of accepted proposals. The ratio accept
/ N
is the acceptance rate
accept_v
Vector of length N
indicating which samples were accepted
M
Mass matrix used in the HMC algorithm
algorithm
HMC
for Hamiltonian Monte Carlo
varnames
Optional vector of parameter names
chains
Number of MCMC chains
logPOSTERIOR
and glogPOSTERIOR
functionslinear_posterior
Linear regression: log posterior
g_linear_posterior
Linear regression: gradient of the log posterior
logistic_posterior
Logistic regression: log posterior
g_logistic_posterior
Logistic regression: gradient of the log posterior
poisson_posterior
Poisson (count) regression: log posterior
g_poisson_posterior
Poisson (count) regression: gradient of the log posterior
lmm_posterior
Linear mixed effects model: log posterior
g_lmm_posterior
Linear mixed effects model: gradient of the log posterior
glmm_bin_posterior
Logistic mixed effects model: log posterior
g_glmm_bin_posterior
Logistic mixed effects model: gradient of the log posterior
glmm_poisson_posterior
Poisson mixed effects model: log posterior
g_glmm_poisson_posterior
Poisson mixed effects model: gradient of the log posterior
Neal, Radford. 2011. MCMC Using Hamiltonian Dynamics. In Handbook of Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng, 116–62. Chapman; Hall/CRC.
Betancourt, Michael. 2017. A Conceptual Introduction to Hamiltonian Monte Carlo.
Thomas, S., Tu, W. 2020. Learning Hamiltonian Monte Carlo in R.
Samuel Thomas samthoma@iu.edu, Wanzhu Tu wtu@iu.edu
# Linear regression example set.seed(521) X <- cbind(1, matrix(rnorm(300), ncol=3)) betavals <- c(0.5, -1, 2, -3) y <- X%*%betavals + rnorm(100, sd=.2) fm1_hmc <- hmc(N = 500, theta.init = c(rep(0, 4), 1), epsilon = 0.01, L = 10, logPOSTERIOR = linear_posterior, glogPOSTERIOR = g_linear_posterior, varnames = c(paste0("beta", 0:3), "log_sigma_sq"), param=list(y=y, X=X), parallel=FALSE, chains=1) summary(fm1_hmc, burnin=100)#> Summary of MCMC simulation #>#> 2.5% 5% 25% 50% 75% 95% #> beta0 0.4778379 0.4847789 0.518149 0.5321988 0.5474873 0.5726653 #> beta1 -1.0435956 -1.0398451 -1.022090 -1.0099795 -0.9969146 -0.9695882 #> beta2 1.9749648 1.9834760 2.003620 2.0201366 2.0330953 2.0521270 #> beta3 -3.0212212 -3.0146309 -2.996771 -2.9813806 -2.9668917 -2.9442674 #> log_sigma_sq -3.2887695 -3.2522864 -3.150465 -3.0570739 -2.9441514 -2.8255475 #> 97.5% #> beta0 0.5781760 #> beta1 -0.9622133 #> beta2 2.0554530 #> beta3 -2.9308313 #> log_sigma_sq -2.7737642# poisson regression example set.seed(7363) X <- cbind(1, matrix(rnorm(40), ncol=2)) betavals <- c(0.8, -0.5, 1.1) lmu <- X %*% betavals y <- sapply(exp(lmu), FUN = rpois, n=1) fm2_hmc <- hmc(N = 500, theta.init = rep(0, 3), epsilon = 0.01, L = 10, logPOSTERIOR = poisson_posterior, glogPOSTERIOR = g_poisson_posterior, varnames = paste0("beta", 0:2), param = list(y=y, X=X), parallel=FALSE, chains=1) summary(fm2_hmc, burnin=100)#> Summary of MCMC simulation #>#> 2.5% 5% 25% 50% 75% 95% #> beta0 0.5168403 0.5581553 0.6644147 0.7756224 0.8917828 1.0520828 #> beta1 -0.6815951 -0.6505318 -0.5738573 -0.5167261 -0.4646123 -0.3867174 #> beta2 1.0298809 1.0541035 1.1469696 1.2088527 1.2757970 1.3789653 #> 97.5% #> beta0 1.1026491 #> beta1 -0.3636618 #> beta2 1.4163911