neff.hmclearn.Rd
Calculates an estimate of the adjusted MCMC sample size per parameter adjusted for autocorrelation.
# S3 method for hmclearn neff(object, burnin = NULL, lagmax = NULL, ...)
object | an object of class |
---|---|
burnin | optional numeric parameter for the number of initial MCMC samples to omit from the summary |
lagmax | maximum lag to extract for determining effective sample sizes |
... | currently unused |
Numeric vector with effective sample sizes for each parameter in the model
Gelman, A., et. al. (2013) Bayesian Data Analysis. Chapman and Hall/CRC. Section 11.5
# poisson regression example set.seed(7363) X <- cbind(1, matrix(rnorm(40), ncol=2)) betavals <- c(0.8, -0.5, 1.1) lmu <- X %*% betavals y <- sapply(exp(lmu), FUN = rpois, n=1) f <- hmc(N = 1000, theta.init = rep(0, 3), epsilon = c(0.03, 0.02, 0.015), L = 10, logPOSTERIOR = poisson_posterior, glogPOSTERIOR = g_poisson_posterior, varnames = paste0("beta", 0:2), param = list(y=y, X=X), parallel=FALSE, chains=2) neff(f, burnin=100)#> [1] 877 2310 797