Method for hmclearn objects created by mh and hmc functions. Extracts the specified quantile of the posterior.

# S3 method for hmclearn
coef(object, burnin = NULL, prob = 0.5, ...)

Arguments

object

an object of class hmclearn, usually a result of a call to mh or hmc

burnin

optional numeric parameter for the number of initial MCMC samples to omit from the summary

prob

quantile to extract coefficients

...

additional arguments to pass to quantile

Value

Numeric vector of parameter point estimates based on the given prob, with a default of the median estimate.

Examples

# Linear regression example set.seed(521) X <- cbind(1, matrix(rnorm(300), ncol=3)) betavals <- c(0.5, -1, 2, -3) y <- X%*%betavals + rnorm(100, sd=.2) f1 <- hmc(N = 500, theta.init = c(rep(0, 4), 1), epsilon = 0.01, L = 10, logPOSTERIOR = linear_posterior, glogPOSTERIOR = g_linear_posterior, varnames = c(paste0("beta", 0:3), "log_sigma_sq"), param=list(y=y, X=X), parallel=FALSE, chains=1) summary(f1)
#> Summary of MCMC simulation #>
#> 2.5% 5% 25% 50% 75% 95% #> beta0 0.3761942 0.4648189 0.5155872 0.5325537 0.5497568 0.5781873 #> beta1 -1.0739748 -1.0488209 -1.0281105 -1.0118904 -0.9965476 -0.9627243 #> beta2 0.9617633 1.8882191 1.9997614 2.0164956 2.0314843 2.0521531 #> beta3 -3.0255286 -3.0154147 -2.9970442 -2.9807522 -2.9646554 -2.8305029 #> log_sigma_sq -3.2893269 -3.2522864 -3.1503169 -3.0392322 -2.9052983 -0.4878351 #> 97.5% #> beta0 0.5854330 #> beta1 -0.9602134 #> beta2 2.0591168 #> beta3 -1.8103326 #> log_sigma_sq 1.5343091
coef(f1)
#> beta0 beta1 beta2 beta3 log_sigma_sq #> 0.5325537 -1.0118904 2.0164956 -2.9807522 -3.0392322