coef.hmclearn.Rd
Method for hmclearn
objects created by mh
and hmc
functions. Extracts the specified quantile of the posterior.
# S3 method for hmclearn coef(object, burnin = NULL, prob = 0.5, ...)
object | an object of class |
---|---|
burnin | optional numeric parameter for the number of initial MCMC samples to omit from the summary |
prob | quantile to extract coefficients |
... | additional arguments to pass to |
Numeric vector of parameter point estimates based on the given prob
, with a default of the median estimate.
# Linear regression example set.seed(521) X <- cbind(1, matrix(rnorm(300), ncol=3)) betavals <- c(0.5, -1, 2, -3) y <- X%*%betavals + rnorm(100, sd=.2) f1 <- hmc(N = 500, theta.init = c(rep(0, 4), 1), epsilon = 0.01, L = 10, logPOSTERIOR = linear_posterior, glogPOSTERIOR = g_linear_posterior, varnames = c(paste0("beta", 0:3), "log_sigma_sq"), param=list(y=y, X=X), parallel=FALSE, chains=1) summary(f1)#> Summary of MCMC simulation #>#> 2.5% 5% 25% 50% 75% 95% #> beta0 0.3761942 0.4648189 0.5155872 0.5325537 0.5497568 0.5781873 #> beta1 -1.0739748 -1.0488209 -1.0281105 -1.0118904 -0.9965476 -0.9627243 #> beta2 0.9617633 1.8882191 1.9997614 2.0164956 2.0314843 2.0521531 #> beta3 -3.0255286 -3.0154147 -2.9970442 -2.9807522 -2.9646554 -2.8305029 #> log_sigma_sq -3.2893269 -3.2522864 -3.1503169 -3.0392322 -2.9052983 -0.4878351 #> 97.5% #> beta0 0.5854330 #> beta1 -0.9602134 #> beta2 2.0591168 #> beta3 -1.8103326 #> log_sigma_sq 1.5343091#> beta0 beta1 beta2 beta3 log_sigma_sq #> 0.5325537 -1.0118904 2.0164956 -2.9807522 -3.0392322